Length of Arc

Arc length of a sector (s) = $\frac{\text{central angle}}{180^{\circ}} \times \pi \times \text{radius} = \frac{\theta \times \pi \times r}{180^{\circ}}$

$$=\frac{140^{0} \times 3.14 \times 7}{180^{0}}$$

Length of the arc AB = 17.10 in

Find the arc length of each sector. Round the answer to two decimal places. (use π =3.14)

1)

2)

3)

Length of the arc PQ = Length of the arc DE = Length of the arc LM =

4)

5)

6)

Length of the arc GH = _____ Length of the arc AB = _____ Length of the arc RS = ____

7)

8)

9)

Length of the arc YZ = Length of the arc JK = Length of the arc EF =

Length of Arc

Arc length of a sector (s) = $\frac{\text{central angle}}{180^{\circ}} \times \pi \times \text{radius} = \frac{\theta \times \pi \times r}{180^{\circ}}$

$$=\frac{140^{0} \times 3.14 \times 7}{180^{0}}$$

Length of the arc AB = 17.10 in

Find the arc length of each sector. Round the answer to two decimal places. (use π =3.14)

1)

2)

3)

Length of the arc PQ = 43.96 in

Length of the arc DE = 22.33 yd

Length of the arc LM = 4.36 ft

4)

5)

6)

Length of the arc GH = 23.03 yd

Length of the arc AB = 4.19 ft

Length of the arc RS = 8.72 in

7)

8)

9)

Length of the arc YZ = 54.43 ft Length of the arc JK = 4.88 yd Length of the arc EF = 34.02 in