Function Operations

1) If $f(x) = -x^2 - \frac{1}{5}$ and $g(x) = \frac{5}{7}x$; find the following.

i)
$$(g \cdot f)(q^2)$$

ii)
$$f(-y) - g(-y)$$

2) If $f(x) = 3x^2 + 12$ and $g(x) = x^3 + 4x$; find the following.

i)
$$\frac{g(r)}{f(r)}$$

ii)
$$(f+g)(3t)$$

PREVIEW

3) If $f(x) = -4 - x^3$ and

i)
$$(g-f)(u+1)$$

Gain complete access to the largest collection of worksheets in all subjects!

4) If $f(x) = -x^2 + 3x + 1$

i)
$$g(6s + 5) + f(6s + 5)$$

Members, please log in to download this worksheet.

Not a member? Please sign up to gain complete access.

www.mathworksheets4kids.com

5) Which of the following represents $f(2a) \cdot g(2a)$, if f(x) = -6 - x and g(x) = 9?

- i) 18d-54 ii) -9d+12 iii) 9d-12 iv) -18d-54

6) Which of the following represents $g(n^2) + f(n^2)$, if f(x) = x + 1 and g(x) = -2 + x?

- i) $2n^2 1$ ii) $n^2 + 2$ iii) $n^2 2$ iv) $2n^2 + 1$

Function Operations

Sheet 3

1) If $f(x) = -x^2 - \frac{1}{5}$ and $g(x) = \frac{5}{7}x$; find the following.

i)
$$(g \cdot f)(q^2)$$

ii)
$$f(-y) - g(-y)$$

$$-\frac{5}{7}q^6-\frac{1}{7}q^2$$

$$-y^2 + \frac{5}{7}y - \frac{1}{5}$$

2) If $f(x) = 3x^2 + 12$ and $g(x) = x^3 + 4x$; find the following.

i)
$$\frac{g(r)}{f(r)}$$

ii)
$$(f+g)(3t)$$

PREVIEW

3) If $f(x) = -4 - x^3$ and $f(x) = -4 - x^3$

i)
$$(g-f)(u+1)$$

Gain complete access to the largest collection of worksheets in all subjects!

 $u^3 + 3u^2 + 1$

4) If
$$f(x) = -x^2 + 3x + 1$$

i)
$$g(6s + 5) + f(6s + 5)$$

Members, please log in to download this worksheet.

Not a member? Please sign up to gain complete access.

 $-36S^{2}$ www.mathworksheets4kids.com + **32***c*

5) Which of the following represents $f(2a) \cdot g(2a)$, if f(x) = -6 - x and g(x) = 9?

ii)
$$-9d + 12$$

i)
$$18d - 54$$
 ii) $-9d + 12$ iii) $9d - 12$ iii) $-18d - 54$

6) Which of the following represents $g(n^2) + f(n^2)$, if f(x) = x + 1 and g(x) = -2 + x?

$$2n^2-1$$

ii)
$$n^2 + 2$$

ii)
$$n^2 + 2$$
 iii) $n^2 - 2$

iv)
$$2n^2 + 1$$