1) A line \(m \) passes through (1, –7) and (6, –2). A line \(n \) passes through (3, –9) and (8, –4). Prove that the lines \(m \) and \(n \) are parallel.

2) A line \(u \) passes through (3, –7) and (5, –4). Slope of a line \(t \) is \(-\frac{2}{3}\). Prove that the lines \(t \) and \(u \) are perpendicular.

3) A line passes through \(A(0, 0) \) and \(B(5, 15) \). Another line passes through \(C(2, –2) \) and \(D(7, 13) \). Is \(\overrightarrow{AB} \) parallel to \(\overrightarrow{CD} \)? Justify.

4) A line passes through \((–2, 6) \) and \((1, –6) \). Another line passes through \((–5, 4) \) and \((3, 6) \). Prove that the lines are perpendicular?

5) Slope of a line \(p \) is 1. A line \(q \) passes through \((–1, –8) \) and \((4, –3) \). Are the lines \(p \) and \(q \) parallel or perpendicular? Justify your answer.
1) A line \(m \) passes through \((1, -7)\) and \((6, -2)\). A line \(n \) passes through \((3, -9)\) and \((8, -4)\). Prove that the lines \(m \) and \(n \) are parallel.

\[
\text{slope of } m = 1 \; ; \; \text{slope of } n = 1 \\
\text{slope of } m = \text{slope of } n \\
\text{The lines } m \text{ and } n \text{ are parallel.}
\]

2) A line \(u \) passes through \((3, -7)\) and \((5, -4)\). Slope of a line \(t \) is \(-\frac{2}{3}\). Prove that the lines \(t \) and \(u \) are perpendicular.

\[
\text{slope of } t = -\frac{2}{3} \; ; \; \text{slope of } u = \frac{3}{2} \\
\text{slope of } t \times \text{slope of } u = -1 \\
\text{The lines } t \text{ and } u \text{ are perpendicular.}
\]

3) A line passes through \(A(0, 0) \) and \(B(5, 15) \). Another line passes through \(C(2, -2) \) and \(D(7, 13) \). Is \(\overrightarrow{AB} \) parallel to \(\overrightarrow{CD} \)? Justify.

\[
\text{slope of } \overrightarrow{AB} = 3 \; ; \; \text{slope of } \overrightarrow{CD} = 3 \\
\text{slope of } \overrightarrow{AB} = \text{slope of } \overrightarrow{CD} \\
\text{Yes. As the slopes are equal, } AB \text{ is parallel to } CD.
\]

4) A line passes through \((-2, 6)\) and \((1, -6)\). Another line passes through \((-5, 4)\) and \((3, 6)\). Prove that the lines are perpendicular?

\[
\text{Slope of a line passing through } (-2, 6) \text{ and } (1, -6) = -4 \\
\text{Slope of a line passing through } (-5, 4) \text{ and } (3, 6) = \frac{1}{4} \\
\text{Product of their slopes equals to } -1, \text{ the lines are perpendicular.}
\]

5) Slope of a line \(p \) is 1. A line \(q \) passes through \((-1, -8)\) and \((4, -3)\). Are the lines \(p \) and \(q \) parallel or perpendicular? Justify your answer.

\[
\text{slope of } p = 1 \; ; \; \text{slope of } q = 1 \\
\text{slope of } p = \text{slope of } q \\
\text{As the slopes are equal, the lines } p \text{ and } q \text{ are parallel.}
\]