A) Find the area of each parallelogram.

1)

Area =

2)

Area =

3)

Area =

B) Find the area of each parallelogram for the given measurements.

4) base = 3 \frac{1}{4} \text{ in}, height = 2 \frac{2}{3} \text{ in} \quad \text{Area} =

5) base = 14 \frac{1}{13} \text{ ft}, height = 2 \frac{1}{7} \text{ ft} \quad \text{Area} =

6) base = 3 \frac{1}{10} \text{ yd}, height = 7 \frac{7}{6} \text{ yd} \quad \text{Area} =

7) base = 4 \text{ in}, height = \frac{1}{6} \text{ in} \quad \text{Area} =

8) The height and base of a parallelogram are 5 feet and \frac{11}{10} feet respectively. Determine the area of the parallelogram.

\text{Area} =

9) A parallelogram has a base of \frac{1}{8} \text{ yard} and a height of 2 \frac{2}{5} \text{ yards}. What is the area of the parallelogram?

\text{Area} =
A) Find the area of each parallelogram.

1) \[\text{Area} = 60 \text{ ft}^2 \]

2) \[\text{Area} = \frac{44}{15} \text{ or } 2 \frac{14}{15} \text{ yd}^2 \]

3) \[\text{Area} = \frac{40}{63} \text{ in}^2 \]

B) Find the area of each parallelogram for the given measurements.

4) base = 3 \frac{1}{4} \text{ in}, height = \frac{2}{3} \text{ in}
 \[\text{Area} = \frac{13}{6} \text{ or } 2 \frac{1}{6} \text{ in}^2 \]

5) base = \frac{14}{13} \text{ ft}, height = 2 \frac{1}{7} \text{ ft}
 \[\text{Area} = \frac{30}{13} \text{ or } 2 \frac{4}{13} \text{ ft}^2 \]

6) base = 3 \frac{3}{10} \text{ yd}, height = 7 \frac{1}{6} \text{ yd}
 \[\text{Area} = \frac{7}{20} \text{ yd}^2 \]

7) base = 4 \text{ in}, height = \frac{1}{6} \text{ in}
 \[\text{Area} = \frac{2}{3} \text{ in}^2 \]

8) The height and base of a parallelogram are 5 feet and \(\frac{11}{10}\) feet respectively. Determine the area of the parallelogram.
 \[\frac{11}{2} \text{ or } 5 \frac{1}{2} \text{ square feet} \]

9) A parallelogram has a base of \(\frac{1}{8}\) yard and a height of \(2 \frac{2}{5}\) yards. What is the area of the parallelogram?
 \[\frac{3}{10} \text{ square yard} \]