The n^{th} partial sum of the series is given. Find the indicated term of the series.

1) $S_n = \left(\frac{n+5}{n-3}\right)$; 10th term

2) $S_n = \left(\frac{n^2-1}{2n+1}\right)$; 12th term

3) $S_n = n^3$; 33rd term

4) $S_n = (n^3 - 9)n^2$; 25th term

5) $S_n = (400 - n)n$; 48th term

6) $S_n = (5n^2 - 2)$; 11th term

7) $S_n = \left(\frac{n-1}{4n}\right)$; 36th term

8) $S_n = (n^3 + 1)$; 15th term
The n^{th} partial sum of the series is given. Find the indicated term of the series.

1) $S_n = \frac{n+5}{n-3}; \ 10^{th}$ term

2) $S_n = \frac{n^2-1}{2n+1}; \ 12^{th}$ term

3) $S_n = n^3; \ 33^{rd}$ term

4) $S_n = (n^3-9)n^2; \ 25^{th}$ term

5) $S_n = (400-n)n; \ 48^{th}$ term

6) $S_n = (5n^2-2); \ 11^{th}$ term

7) $S_n = \frac{n-1}{4n}; \ 36^{th}$ term

8) $S_n = (n^3+1); \ 15^{th}$ term

Answer key

Finding n^{th} term

- $\frac{4}{21}$
- $\frac{289}{575}$
- 3169
- 1802560
- 305
- 105
- $\frac{1}{5040}$
- 631