Find the volume of each regular prism.

1) \[\text{Volume} = \]

2) \[\text{Volume} = \]

3) \[\text{Volume} = \]

4) \[\text{Volume} = \]

5) \[\text{Volume} = \]

6) \[\text{Volume} = \]

7) A regular prism with a triangular base has a length of 6 feet. The side length and the apothem of the base triangle are 2 feet and 0.58 feet respectively. Find the volume of the prism.

\[\text{Volume} = \]

8) A regular hexagonal prism has a length of 13 inches. The side length and the apothem of the base hexagon are 14 inches and 12.12 inches respectively. Determine the volume of the prism.

\[\text{Volume} = \]
Find the volume of each regular prism.

1) Volume = __262.65 in\(^3\)____

2) Volume = __2,541 ft\(^3\)____

3) Volume = __12,860.1 yd\(^3\)____

4) Volume = __2,811.24 ft\(^3\)____

5) Volume = __1,018.08 yd\(^3\)____

6) Volume = __1,671.3 in\(^3\)____

7) A regular prism with a triangular base has a length of 6 feet. The side length and the apothem of the base triangle are 2 feet and 0.58 feet respectively. Find the volume of the prism.

\[\text{Volume} = \frac{1}{2} \times \text{base} \times \text{height} \times \text{length} = \frac{1}{2} \times 2 \times 0.58 \times 6 = 10.44 \text{ cubic feet} \]

8) A regular hexagonal prism has a length of 13 inches. The side length and the apothem of the base hexagon are 14 inches and 12.12 inches respectively. Determine the volume of the prism.

\[\text{Volume} = \text{base area} \times \text{length} = \frac{3 \times \sqrt{3}}{2} \times 14^2 \times 13 = 6,617.52 \text{ cubic inches} \]